Preserving Context in a Multi-tasking Clinical Environment:
A Pilot Implementation

Dean F. Sittig, Ph.D., Jonathan M. Teich, M.D., Ph.D.,
Joel A. Yungton, B.S., Henry C. Chueh, M.D.

Clinical Systems Research and Development, Partners Healthcare System, Boston, MA

ABSTRACT

The Partners Clinical Application Suite (CAS) is a
multi-tasking software architecture that facilitates the
development, deployment, and use of advanced
clinical information management applications. This
paper describes 1) a software shell in which clinical
applications run; 2) an application programming
interface (API); and 3) development of a set of “Look
& Feel” guidelines. Through its emphasis on support
Jor multi-tasking and application interoperability,
CAS facilitates preservation of the user's context.

INTRODUCTION

Over the past 30 years various investigators have
struggled with the problem of developing easy to use,
yet full-function, clinical computing environments.
In their landmark 1982 report, Matheson and Cooper'
found that academic health centers had information
systems consisting of “fragmented mixtures of single
function, manual, and computer-based files that
[could] neither communicate [nor] exchange
information effectively.”

Medical providers, on the other hand, often do
several tasks at once, in the care of a patient’. A
provider may need to look up a patient's lab results,
consider them in the setting of the patient's past
history and problem list, and write orders based on
the combined information®. Similarly, software
developers in general have shifted to suites of
applications which work as a unit to handle the
diverse information needs that occur in the clinical
workday*,

Over the coming years, the concepts of pragmatic
integration and system agility will be keys to the
successful design, development and implementation
of advanced clinical information systems. Pragmatic
integration implies that few organizations can afford
to stop and rewrite all of their applications to
conform to a new software model. Therefore,
developers must come up with new software

1091—8280/97/$5.00 © 1997 AMIA, Inc.

784

architectures that allow disparate applications to run
within an integrated framework.

System agility is the ability of a system to evolve
rapidly to meet changing requirements. Ideally, the
system should be composed of blocks which are as
modular and separate as possible, permitting rapid
change to individual components, yet continue to
function in an integrated fashion.

Early on we determined that relying solely on the
WIN-95 operating system as our application shell
was not satisfactory for the following reasons: 1) the
flexibility of the interface makes training for
occasional users difficult; 2) maintaining a common
look and feel across applications for the patient
identifying information display is difficult; 3)
providing a constant visual display of all available
applications is impossible.

Therefore, we are developing a new clinical
computing architecture that addresses each of these
issues. This paper describes the Partners Clinical
Application Suite (CAS), an architecture that
facilitates the development, deployment, and use of
advanced clinical information = management
applications. Through its emphasis on support for
multi-tasking and application interoperability, CAS
facilitates preservation of the user's context.

BACKGROUND

Partners Healthcare System

Partners Healthcare currently consists of the
Massachusetts General and Brigham & Women’s
hospitals, Dana-Farber/Partners Cancer Care, and
North Shore Medical Center. Partners’ practices care
for over 800,000 patients in the greater Boston area.

The Partners Computing Environment

The Partners computing environment is based on a
three-tier client-server architecture. The data and
application services tiers are based on MUMPS
running on Windows NT on multi-processor Pentium

Pro servers. These layers provide services to the user
interface layer, which primarily uses Visual Basic,
but also supports native MUMPS and Web-browser
interfaces. It is projected that by early 1998 there
will be 15 machines at the database layer serving
over 100 gigabytes of data, 30 machines at the
application services layer, and over 20,000 client
machines.

PROJECT GOALS

The clinical workstation project’s goals can be
divided into two distinct categories. The first
concerns the software environment with which the
clinical users will interact. Users must be able to
multi-task without getting lost. The second concerns
the ability of the IS staff to develop, maintain, and
control the various clinical applications.

Tuesday Jun 24, 1997

Care Unit 3-B
Select pt
=Prev Nedt =

Smith, Robert J. |

Issues in a Multi-tasking Clinical Environment

1) Applications must work together as interoperable
tools. Clinicians must be able to switch among
several clinical applications without losing track of
where they are or having to back out of, or shutdown,
the application they are leaving.

2) The system must ensure that all concurrent
applications are focused on the same patient. In a
multi-tasking environment with multiple patients, it
is easy for the user to become confused and enter
data for the wrong patient.

3) All applications should maintain a common look
and feel. All applications must have common
metaphors, button locations and actions, screen
navigation, and help functions.

4) Users must be able to run third-party applications
(Scientific American Medicine, Netscape browser,
etc.), concurrently with, and (where possible)
interactively with locally-developed applications.

5) There should be a visual 'anchor' to help users
maintain their frame of reference.

You are logged in as: dfs

ToDo ‘Summary] History] Notes]ﬂowshaet] Heslth Maintenance | Immunizations] Demographics | Browse|
Problems Medications
m New Medications
hypertension atenolol 100mg tablet
Info angina pectoris Isordil 10mg tablet
Oobig diabetes mellitus Past Medications
i cough lisinopril 5mg tablet
s i smoking Biaxin 500mg tablet
s bronchitis
Orders
Referral
: The current patient has changed.
Woidiad & Do you want to save your changes
- before procaeding? ?
IE3 Visits es
02/01/97 Chueh I
01/28/97 Chueh T OToW~OF
12/20/96 Chueh Follow-Up
11/05/96 Chueh Initial Visit
Help
Feedbak
Fi Clinical zp, Ea e View cq) UP“‘“ [F7] Reports [Fg] Stanatite.
Messages Chan Qﬂ =
Developer 1.4

A start| 3 ocANYWHER...| & Exploting - temp | R Paint Shop Pro | [3) MSN.COM Set.|[Pad Monitor ...

G2 428pM |

Figure 1. The Clinical Application Suite. The user has just changed back to the Longitudinal Medical Record
(LMR) from Orders. CAS prompts the user to save pending data entries on a previous patient.

785

Issues in Software Development

1) Applications must be able to be developed,
deployed, and updated separately, while the overall
system keeps running.

2) The system should facilitate the sending and
receiving of manual or automated alerts and
messages related to clinical events and patients.

3) Users should not have to re-enter their password
before starting each individual application.

4) The system should facilitate the saving of
uncompleted work in the event of either a change in
current patient, system time-out, or system shutdown.
In an attempt to insure that all the project goals could
be met, the following design decisions were made.

Design Decisions for the Clinical Application Suite
1) To ensure that users are not missing some of the
information presented by an application, all
applications will run in a constant-size window. CAS
changes the desktop workspace to ensure this.

2) Only one copy of each application will be
allowed to run at any one time.

3) A small portion of the screen will be reserved for
the CAS itself: this includes space to display the
patient identifier, the available and active
applications, and special messages. Users may start
any CAS application from the CAS button bar or
from within another CAS application.

4) All functions will be accessible using both the
keyboard and the mouse.

5) Upon regaining focus, each application is
responsible for checking that the current patient has
not changed. If the patient has changed, the
application must ask the user to choose which patient
he wants to work with.

6) All applications must be able to respond to a
CAS message at any point in time. = Therefore,
developers are not allowed to use any VB controls
that block OLE messages.

SYSTEM DESCRIPTION

In an attempt to create a software architecture that
could support all the functions described, we had to:
1) Create a robust, reliable, easy to use software shell
in which the applications could run; 2) Develop an
application program interface (API) to allow the
various clinical applications to communicate; 3)
Develop a set of “Look & Feel” guidelines for all
clinical application developers.

The Software Shell
The current version of the CAS utilizes many
features of the WIN-95 desktop and operates closely

786

with the WIN-95 operating system. The CAS
executable is implemented using an application
desktop toolbar (appbar) in the same manner as the
Microsoft Office shortcut bar’. Once CAS startes, it
changes the size of the desktop reported to all other
programs (via a Windows system call) and anchors
itself to the top and left side of the desktop. By
setting the appbar to be “always on top” any other
WIN-95-based program can run and appear visually
to be “in the CAS”. Each application that runs within
CAS is a stand-alone *.exe with an exposed OLE
class which CAS instantiates and uses to send
messages. Each individual application that is started
must register with CAS. Once registered, it can
receive messages from the CAS.

The Application Programming Interface Messages
The following messages were created to allow
applications to communicate with CAS.

PATIENT CHANGED

When the user or an application changes the current
patient, the PATIENT CHANGED message is sent to
CAS. CAS responds by displaying the new patient’s
identifying information and sending the message to
the active application so it can load the new patient’s
data immediately rather than waiting to regain focus.

VISIBLE

When the user presses one of CAS’s application
buttons, a different application is displayed. When
this occurs, CAS sends the VISIBLE message to two
applications: 1) The application they are switching to
is sent the message with TRUE. 2) The application
they switched from gets FALSE. An application may
use the TRUE message to trigger a routine that will
load the current patient, if necessary, or to
discontinue background clean-up procedures.

QUERY SHUTDOWN

This message is sent to all registered applications
when the user presses the EXIT button or attempts to
shutdown the Partners Desktop from the START
menu. In response to this message, each application
checks if it has data that has not been saved to the
network. The application may prompt the user to
save the data, to ignore it, or to cancel the shutdown.
If CAS receives a CANCEL message from any of the
registered applications, the SHUTDOWN process is
discontinued and CAS brings the application that
requested the cancel to the foreground.

Table 1. Overview of CAS API and Application responsibilities.

Initiated by Desktop CAS Response Application Action
System shutdown send SHUTDOWN save data; exit
Time out send SCREEN SAVE ON save data
| Initiated by User
Change application send VISIBLE=TRUE verify current patient
Select Patient Display new patient Get new patient data
send PATIENT CHANGED
Shutdown send QUERY SHUTDOWN Inform user; save data; exit
Initiated by Application
Change application receive ACTIVATE APP; change to new app | verify current patient
NOTIFY ALL relay message to all apps take appropriate action
REGISTER with CAS instantiate app messaging class perform startup routine
New data available send NEWDATA via NOTIFY ALL Get new patient data
SHUTDOWN ACTIVATE APP

Sent to all applications when CAS receives a
message from the Partners Desktop that the
workstation has timed out and it is being reset for the
next user. Each application should treat the message
in much the same manner as a Query ShutDown
message except that the user is not available to
respond to queries. Each application must decide on
its own whether to save any partial data or discard it.
Whether the application saves data or not, it must
unload itself and allow CAS to continue the normal
shutdown process.

SCREEN SAVE ON / SCREEN SAVE OFF

The screen saver is activated after a time-out period;
the system does not shut down, but it must be
reactivated by the current user to continue work.
Another user may make use of the workstation to
start a new session. The applications should take
advantage of this state to save any data in
anticipation of a user change. An application may
also choose to start/end any background cleanup or
data retrieval processes at this time.

REGISTER

Applications that are written in-house are required to
register with CAS upon loading. CAS uses the
application’s messaging class to send messages, and

the application’s window handle to position it within
CAS’s boundaries.

787

Applications send this message to change the current
application. The effect is the same as if the user had
selected another application button.

NOTIFY ALL

Applications send this message to ask CAS to
broadcast a message to all registered applications.
For example, when an application that is registered
with CAS receives new data relevant to other clinical
applications, the application uses NOTIFY ALL to
send the NEWDATA message to CAS. The
application may decide to: a) reload the current
patient’s data, b) query the user as to whether or not
they wish to reload the current patient’s data, or c)
ignore the message altogether.

Development of the Look and Feel guidelines

A committee was named to develop overall Look and
Feel guidelines (L&F) . The committee was
composed of clinical end users, experienced clinical
software developers, technical experts, and several
informaticians. Early meetings emphasized
demonstration and discussion of what was working
and not working in the current clinical system. Later
meetings focused on the capabilities of the new
graphical user interface development tools that had
been chosen as the standard software development
environment. Once development of the various
clinical applications began, members of the L&F
committee were assigned to each of the projects to
work with each project team®. As new problems and
solutions were identified, these were documented and
distributed via an internal WEB site.

DISCUSSION

Over the past year, we have made significant
progress in developing the software architecture for
the new Partners clinical applications. Along the
way we have learned many valuable lessons as the
result of our experimentation with various software
architectures.

In the first working prototype of the Partners Clinical
Application Suite (CAS) each of the clinical
applications was written as an in-process dynamic
link library (*.DLL). In an attempt to make the CAS
application (including the in-process DLLs) look and
feel like one big application, we used a low-level
WIN-95 call to “switch the parent” of the window
containing the graphical elements of the clinical
application (i.e., the DLL) to a window on a TAB
control that was used within the CAS to implement
task switching. This WIN-95 feature allowed us to
control the position of each clinical application and
ensure that all applications were tightly integrated.

An early version of the CAS used the same “switch
the parent” call although each of the clinical
applications were written as out-of-process DLLs.
While this implementation worked, the time required
to load the individual clinical applications was 2-3
times longer (3-4 secs) than the in-process DLL
model.

We were forced to abandon both of these early
implementations for the following reasons: 1) Both
keyboard and mouse actions were unpredictable as
the user moved among the various applications; 2)
Neither model allowed developers to implement
application modal windows within applications; 3)
Both models placed an inordinate burden on
application developers to learn about and conform to
the CAS-concept of creating programs; 4) When an
individual application crashed, recovery was
difficult. 5) This model made it more difficult for
naive users to run third-party applications while still
keeping track of their clinical work.

The Clinical Context Object Working Group’
(CCOW) is developing a specification for a patient
context object that has the potential to allow clinical
applications created by different vendors to work in
much the same manner as the CAS. They are
currently struggling with several clinical scenarios
that are not current concerns in our development
effort: 1) managing the current patient if the user
starts two versions of the same application, and 2)

788

handling the possibility that applications will be
using two or more different patient databases and that
the current patient many not be registered in one of
the databases.

CONCLUSION

A large, integrated clinical information system is
composed of many separate application programs.
Each performs a small set of highly specialized
clinical functions on the patient database.
Developing a multi-tasking environment in which
each of these applications can operate is difficult.
The key requirements for such an environment are:
1) maintain the patient context across applications;
2) maintain a common look and feel across
applications;
3) maintain the user identification and authorization
status across applications;
facilitate the development and deployment of
new applications to clinical users.
We implemented a multi-faceted approach including
development of a common patient object, a common
user object, a detailed set of look and feel guidelines,
and a custom software architecture to satisfy these
requirements.

4

References

1. Matheson NW, Cooper JAD. Academic
information in the health sciences center: roles
for the library in information management. J
Med Educ 57:1-93; 1982.

2. Kuhn K, Reichert M, Nathe M. et al. An
infrastructure for cooperation and
communication in an advanced clinical
information system. Proc Symp Comput Appl
Med Care (1994):519-23.

3. Tang PC Annevelink J Fafchamps D et al.
Physicians’ workstations: integrated information
management for clinicians. Proc Symp Comput
Appl Med Care (1991) :569-73.

4. Chueh HC, Raila WF, Pappas JJ et al. A
component-based, distributed object services
architecture for a clinical workstation. Proc
Symp Comput Appl Med Care (1996):638-42.

5. Richter J. Extend the Windows 95 Shell with
Application Desktop Toolbars. Microsoft
Systems Journal Vol. 3 (1996).

6. Hopper S, Hambrose H, Kanevsky P. Real world
design in the corporate environment: Designing
an interface for the technically challenged. Proc.
Comp. & Human Interaction (1996):489-495.

7. Clinical Context Object Working Group
www.mcis.duke.edu:80/standards/clin-cntxt

